A COEFFICIENT INEQUALITY FOR SCHLICHT FUNCTIONS

BY

P. R. GARABEDIAN AND M. SCHIFFER

TECHNICAL REPORT NO. 24

JUNE 25, 1954

b L1

¥y o

ORI
VIR TR \‘. . -
.E‘{-":.tswu\. o E.., .ui. ;:\g

FREPARED UNDER CONTRACT Nonr 225(1]_)
(NR-041-086)
FOR

OFFICE OF NAVaL RESEARCH

APPLIED MATHEMATICS AND STATISTICS LABORATORY
STANFORD UNIVERSITY
STANFCRD, CALIFORNIA



THIS REPORT HAS BEEN DELIMITED
AND CLEARED FOR PUBLIC RELZASE
UNDER DOD DIRECTIVE 5200,20 AND
NO RESTRICTIONS ARE IMPOSED UPON
178 USE AND DISCLOSURE,

DISTRIBUTION STATEMENT A

AFPROVED FOR PUBLIC RELEASE,
DISTRIBUTION UNLIMITED,




e

4 COEFFICIENT INEQUALITY FOR SCHLICHT FUNCTIONS

By

P. R. Garabedian and M. Schiffer

1. Introduction.
A greal part of the theory of conformal mapping has been built around
the study of the coeificients a, of functions

(1) £(z) = z+ a222+ a3z34'84z4+ St

schlicht in the interior ,z|< 1 of the unit circle and the coefficients bn

of functions

b b b
(2) g(z)=z+bo+;l+;§-+;§+...

schlicht in the exterior |z|>1 of the unit circle. The estimates of these
coefficients which have been obtained fall essentially into two classes,

namely, those whiich follow in a natural way from the area theorenm
1, 12 2 -
(3) 1> ;Dll + 2|b2} + 3|b3l E w

or its variants, and those, such as Loewner's theorem |a3‘5'3’ which cannct
be derived from such elementary considerations. While most of the wuseful
distortion theorems of conformasl mapping are consequences of the area
theoreﬁ (3), there is nevertheless a great interest attached to the more
remote class of inequalities because of the unanswered status of the

Bieberbach conjecture |an|511.
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The principal result cf the present vaper is the sharp ineguality

@ oyl 3+ ¢

which belongs in this latter category. For esilier ccefTicients, the
estimates (bl‘g,l and |az|5_2 follow quickly from (3), while even the more
difficult inequality lb2‘552/3 can be deduced from a generalized area
principle. Next in order of difficulty comes the theorenm ‘83!§ 3 due to
Leewner [37, for which we shall give here a new and particularly simple
procf. Thus the bound (4) on szl represents possibly the farthest point
yet reached in estimating the higher coefficients of schlicht functions.

Our method of proving (4) is based on the differential equation for
the schlicht function maximizing ‘bB\ which results Zrom an application of
interior variations. We suppose that by now the precise derivation of such
differzntial cquations is familiar to the student cof schlicht functions. Our
contribution lies rather in determining the correct values of the parameters
which appear in the differential equation, and this permits us to integrate
the equation in closed form and find the largest value of ,bBI‘ Underlying
cur manipulations are a set of identities involving elliptic integrals which
determine the parameters in the differential equation in such a way that
its solutidn is a schlicht function. The main difficulties of the investi-
gation center about a successful analysis of these identities. It is because
the corresponding identities for the case of higher coefficients involve
hyperelliptic integrals that the Bieberbach conjecture 'an‘s_n remains
an unsettled problem.

& speciel significance attaches to the sharp estimate (4) because

this result forces rejec.ion of the eariier conjecture {971 that

~
(5) lbnlsn:]_ ’ n=1,2,3,...,




with equality holding for essentially only the function
1

(6) g(z) - (Zn+l* 5+ Zmn—l)n+1 )
While this mapping function is a solution of the differential equation and
the associated parameter relatisns, we succeed nevertheless in finding, for
n= 3, anotoer solution with a larger third coefficient. Proof of (4)
consists merely in showing that this new solution and (6) are actually the
only functions fulfilling the requirements upon an extremal mapping. The
existence of superfluous solutions of the differential equations again
illustrates the difficulties inherent in the coefficient problem for schlicht
functions and indicates that a naive apprcach through conjectures based on
familiar elementary maps is of no aveil. We emphasize, however, that our
advance here does not cast doubt on the Bieberbach conjecture, since we
obtain an extremal function for (4) which has real coefficients.and the
Bieberbach conjecture has already been established for functions with real
coefficients.

In the next section, we illustrate our fundamental technique by giving
a new proof of Loewner's theorem, based on the differential equation for the
extremal function. The sections follcwing are devoted to the more tedious
proof of the inequality (4). Closing portions of the paper take up
corollaries of the princioal theorem, suzh as the inequalities
(7) Re bB-Bibl} <3, Re{bzrzbl} <2 .
or indicate results which fit appropriately within the broader scope of

our investigation.
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2. Proof that |aBl < 3.
Each schlicht function f(z) of the form (1) generates a schlicht

function g(z) of the form (2) accerding to the rule

2
a,—- 8
—= 3 +

(8) g(z) = 5157;7 =z- a8, . :

If the behavior of g(z) on the unit circle is sufficiently regular, we

find by the residue theorem

1 d

(9) b =TI Sgg(z%z—z :
1z1=1

ie

or, using (8) and setting z=e ,

2T
.

URRY - -1 1
(10) -2, bo 7 fr;s de
0

With t= g(z) we can consider the image M in the t-plane of the unit circle
[z|=1 and we can interpret the measure

(11) dr).='§i—_rd9

in the usual electrostatic sense. Thus we think of drl as the natural
charge distribution on [°. It is a non-negative distribution of total

charge 1, and we therefore call the coefficient
N

(12) b, = Jth
rl
the conformal centroid, or centroid, of the set . Formula (10) shows that

the coefficient a, is related to the centroid of M vy

-a2= f‘bd‘,{ i
r

and thus it is clear that ~a, is a point insids the convex hull of M.

(13)

¥ith these preliminaries behind us, we proc=ed to the problem of

maximizing |a. . We write
3



(14) w = £(z)
snd we choose for f(z), without loss of generality, the extremai function

maximizing [aB| such that ag> 0. It follows from the method of interior

variation that the extremal function (14) satisfies the ordinary differential
equation [4, 5, 7, 8]

2 2a 2 2a. _

(15) de (L , 2y -dz_ 2 4 2 +2a
2 w 2 3 2
LABER z

—154- z+z2) N
Z

where the parenthesis on the right is non-negative for |z|=1. Thus if we

put

=l= 1
(16) t = 10 >
we find that the image [ in the t-plane of the unit circle |z|= 1 consists

of analytic arcs satisfying the differential equation

(t*2a2)1/2

{ 5 =
k) Re /2 dt )

The conformal transformation

b (1920172

(18) H = J\ —i5 dt
A2

0]
performs a univalent map of either of the half-planes bounded by the line
L through the points O and -2a2 in the t-plane onto a polygonal region R of
the H-plane bounded by a linear ray from the origin, a finite line segment
joining this ray at the origin under an angle of 90° with respect to the
regici, ané a Ssecond infinite linear ray separating from the cther end of the
segment at an anglzs of 270°% with respect to the region. The expression (18)
ig, in fact, merely a Schwarz-Christoffel transformation of a rotated half-

piane. Now the arcs ' in the t-plane correspond to a segment of the

o



imaginary axis in the B-piane, according to the differential equation (17).
Furthermore, if this segment, starting out from the origin; enters one of
the above regions R, it must remain there, since R consists cf the sum of
two quadrants. Thus the curve ™ must either coincide with the line L
between O and -2a2, possibly forking at -2a2, or else, if we overlook the
origin, ™ must lie entirely interior to one of the half-planes bounded

by L. We shall exclude this latter possibility.

Indeed, if [11ies in the interior of one of the two half-planes
bounded by L, then so does its centroid with respect to the natural charge
distribution (11). But from the explicit calculation (13), the centroid
lies on the line L, halfway between O and -2a2. Thus [ can lie in no
such half-plane and must actually coincide with L between G 9nd -2&2, with
a possible fork at the latter point.

To exclude the fork, we notice that such a configurstion would entail
two end-points of [’ corresponding to twe double zeros of the right-hand

side of the differential equation (15). Thus we would have

(19) (-215 - 2:2 v 2a v dagzeat) = (3 ey
whence
(20) 2a, = az+ 2
3 2
Since [ a5l <2, this leads to the conclusion
|a2)2
(21) [a3| s —5—*+1<¢3

For equalii - to hold in [21) we must require {a2f= 2, and this is true

essentially only for the Koebe slit mapping

(22) w = -2
(1---z)2



Notice that (20) follcws even when [M does not fork at -2a,, since in that
case the right-hand side of (15) must have a quadruple root there.

This completes our proof of Loewner's theorem. It is based on an
appropriate usc of the identity (13), obtained from the schlicht character
of the mapping (14), and it exploits in an essential way a geometrical

analysis of the behavior of solutions of the differential equation (17).

-~

3. The Inequality for b

3"
We proceed to the proof of (4) in several stages. Since the differential
equation for the extremal function g(z) maximizing [b3| and normalized so
that b3>-0 1s less familiar than the analogous differential equations for
functions schiicht in the interior of the unit circle, we sketch a derivation
of this equation. We stress that the derivation presented here is heuristic,
and we refer to the literature for an exact treatment {7, 10J}.
The extremal function
(23) t = g(z)
maps the unit circle \z|= 1 onto a system of curves M. There is no loss of
generality if we assume throughout that bo= 0, since this can be achieved
3imply by a translation of lﬂ. Let r; be a small arc of ' of outer mapping

radius P and let to be a point of PP. Then there is a conformal mapping
of the form

2 3
Clp . 02p .
(t"‘to) (t_tn).?

(24) G = t-t *C_p+

taking the extverior of ,19 into the exterior lnj > P of the circle of radius
P in the zuplane. We introduce the special functions

2
Bl_p

z ;

(25) g = 0+

red



with

(26) |3, l<1

which are schlicht in %} > p- The coefficient B1 can be chosen arbitrarily
except for the condition (26). It is well known that for each n the coefficients
Cn are bounded uniformly in -

By composition of the mappings (23), (24), and (25), we construct for

{ z|>1 the schlicht function

2
b_ B b} (C.+B )IO
X = 1,2 - 171 2
badie el Slae o 22 ' Z3+ = t0+CofD+ g(zi-to * 0((9 )
2 2 2 >
= get +C .\ b1+(Cl+B1) e . b2+to(Cl+Bl)f> . b3+(to—bl)(cl+Bl)F>
° ° P : Z2 ZB

Boee 0(632)
From the extremal property of g(z) it follows that
2, 2 2,
(28) |by+ (£-)) (61+B)) 0%+ 0( )| < |b, |
e let p —»0 and we note that Cl——>--92i¢, where (@ is the angle of inclination

of the tangent ta [ at t_. Since b3>-0, we derive from (28) in the limit

as @->0 the inequality
(29) Re {(t;-bl)(131--e'°'i°?)3v <0 ,

where B1 is any complex number satisfving (26). Because of the freedom in
the choice of Bl’ the variational condition (29) yields the relation

2 2
(30) (t-b,)ats > 0
for the differential element dto of M at the point to. This result is
actrally a differential equation for the system of ares ['.

e can derive from (30) a differential equation for the extremal function

g(z). Consider the expression
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(31) zzg'(z)2r~fz)2-b1] = b z2-2b22-4b3+... s

1
which is an analytic function of z in the exterior of the unit eircls,

except for the indicated pole at infinity. According to (30), this function
must be real for |z|= 1, and hence we can continue it analytically into the
interior of the unit circle by the Schwarz reflection prineciple. The fwmction

has a pole at the origin determined by the expansion (31), and hence we are

able tc calculate it explicitly and obtain

2 2b

WR 98 (R 41 ) = by 2o ausb o —2 o L, L
(32) ey (g bl) 27-b2°-2b,2 4b3 = 22+ZA .

This is the desired diffesrential equation for the schlicht function g, and
we note only that, according to (30), the right-hand side must be non-positive
ror [z{=1.

We turn to the rigorous intiegration of (32). There are three character-
istically different cases to be considered. (i) Tbe curves I contain both
the square roots of bl’ In general, [ will fork at these points and will
have four end-points, each of which corresponds to a double root of the right-
hand side of (32) on the unit circle |z} =1. However, [" might not fork and
might even terminate at a cr’tical point, but (32) will still have four
double roots whenever [' contains the two square roots of bl' (i1) The
curves [ contain precisely one of the squsare roots of bl; I" will have, in
geners]l, three end-points, so that the right-hand side of (32) has only
three double roots on |z|=1 and the two remaining roots lie at inverse
points inside and outside the unit cirecle. (iii) The set [ does not contain
either of the square roots of b1 and hence consists of a simple arc without
forks and with only two end-points, so that the right-hand side of (32) has

two double roots and fcour simple roots. In this last case, the integration
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of (32) involves elliptic integrals, whereas in thle first two cases only
elementary integrals are required.

In later sections of the paper we shall prove that cases (ii) and (1ii)
can be excluded. We study in this section only case (i) and we determine the
actunl extremal function which maximizes ,b3].

In case (i), the right-hand side of (32) has four double rooits and is

a perfect square, whence

2b, b b
- -2 1,1 R 1_ 1,42
(33) 2-by2°-2by2-4b - 5 - S 4 = (2F- 57 - )
2 Z 2
and 2
By
(34) by=0 , by=3-73¢

The coefficient b1 must be pure imaginary, since both sides of (33) sre
non-positive. We can now take the square root of both sides of (32) and
integrate to obtain

's’(g?‘-bl)l/2 b, g*(g?‘-bl)l/2

(35) g le i T

]
where K is a constant of integration.

+

2
Z.
2

In order to evaluate K, we expand (35) about the point at infinity in
the z-plane, using (2) and remembering that we tock bo='0. By noting that

the constant terms on both sides of the equation must be the same, we find

that
ST Ty
= " '
(3€) K 4 bl 7 log bl
Sinea [ passes through the point bi/z, there exists a value 2, of 2 on the

nnit circle |z|=1 such that

: 1/2
(37) glz,) = bl/

Substitution of this value of z into (35) yields the additional relation

J
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z2 b
(38) 0= E? * 12 - 2% log z +K

The terms in (38) involving z are real, and hence K is real. Therafore

by (36) we have, since b, is pure imaginary,
(39) lbll -
39 3b1+-b1 log o 0 :
Using again the imaginary character of b,, we deduce from equation (39)

that either b, =0 or else ,b1|==43"3 and

(40) b, = 4>

The root by =0 of (39) leads to the solution (6) of (32), with n= 3, and
b,=1/2. On the other hand, the value (40) for by leads by (34) to the
value

(41) b, = % L

of the third coefficient of g(z). This value is the larger of the two, and

thus the function maximizing |b3l must be the one defined, according to

(35), by the implicit relation

} 2_,. =3y1/2 ;
(42) g(gz-kie'B)l/z- Lie 3 log gt(g é;e ) = zz* jz + bie 3
4

The extremal function (42) maps the exterior of the unit circle in the
z-plane onto the exterior of a system of arcs ' which consists of a line
segment joining the two square roots of Z;ie—3 and four analytic arcs forking
from these square roots at angles of 120°. Wo remark that an extremal
funclion with real coefficientz can be obtained from the present one by
rotation, and, indeed, e(Tri)/4 g(ze-(TTi)/A) is such a function. However,

its third coefficient is negative.

In order to estatlish that (41) is actually the largest value of b_, we

3

must exclude the above cases (ii) and (iii). This will be done in the next



sections by a method based on the knowledge that for schlicht solutions
of (32), the siigular points of the differential equation in the z-plane

must correspond to the singular points in the t-planse.

4. Exclusion of Elliptic Integrals.

We establish in this section that there are no schlicht solutions of
(32) in the case (iii) where the hypothesis is that the image I in the
t-plane of the unit circle |z |= 1 consists of a single analytic arc and does
not pass through the branch points of (30) at ihe square roots of bl’ A>tual
integration of the right-hand side of (32) in this case would involve the
use of elliptic integrals, and the succeas of ocur treatment stems from the
fact that we are able to avoid such a step and work only with the left-hand
side of the equation, or, more precisely, with (30). Our first remark is
that we do not lose any generality if we suppose that the z-plane and tae
t-plane have been rotated so that blz.O, while b3 is no longer necessarily
real. This new normalization is more convenient for our study of (30), but
we notice that (30) must now be replaced by the more general differential
equation
(43) 1 %(4%-p )as” > 0
for the arc [7, where K is a fixed real parameter depending on the angle of
rotation. The normalization b0= 0O, made previously, is not sltered by the
rotation of coordinates.

We introduce the integral
t
p
(44) H = f(tz-bl)llz at
0

and we point out that the different’al equation (43) merely states that [7

is the image by thie transformation (44) of a line segment L in the H-plane
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inclined at an angle -o, with the real axis. This interpretation of (43)
permits us to show that " cuts the real axis between —b%/é and +b%/2. In
fact (44), viewad as a Schwarz-Christoffel transformation, maps the upper

half of the t-plane onto the exterior of a semi-infinite strip of the form

(45) ReH>0 , -h<ImH<h ,
where b1/2
1
(45) h = Imf (1;2-1)1)1/2 dt
0

In order to establish that | cuts the real axis betwaen —b’}_/ 2 and *b}/ 2 1t
suffices to prove that | cuts both the real axis and the imaginary axis.
For if this is true, then the line segment L in the H-plane corresponding to
M must cut both the boundary of the semi-infinite strip (45) and the negative
real axis in the H-plane, since these map by (44) into the real and imaginary
axes in the t-piane. Any line segment L with the above properties has to
intersect the segment Re H=0, -h< Im H< h, and since this segment correspcnds
to the interval between -bi/z and +bi/2, the arc | must cut that interval.

It remains, thon, tc show that |' cuts both the real axis and the
imaginary axis. But, in the notation of formulas (2) and (12), we interprst
the normalization b =0 to mean that the centrcid b  of " lies at the origin,

or in other words
(47) B, = r[tdp =0
This can only occur if [ cuts both coordinate axes, and thus our lemma is
established. A special application of this argument shows in addition that
b17‘0.

We must consider all positions of the arec [" which are consistent with

the properties that it cuts the real axis between —b%/: and +bi/2, that it
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has outer mapping radius 1, and that its centroid lies at the origin. We
shall prove that tuese properties imply that I" passes through the origin
and is symmetric in the origin. It is evident that the converse is true,

namely, that an arc which satisfies the differential equation (43) and is

symmetric in the origin must have its centroid at the origin. Thus our

procf can be carried out by establishing the uniqueness for zach value
of the parameter o of this solution of the equation (47).

As a preliminary, we derive variational formulas for the capacity &
and centroid b0 of the curve ['. We shall need such formulas for a shift
o= 7 corresponding to infinitesimal translation and magnification of the
image segment L in the H-plane. We denote the shifted segment by ﬁ* and
we let r* denote the correspondingly varied arc in the t-plan:. We shall
use addition of an asterisk to indicate all quantities associated with the

k3
varied configuration. The infinitesimal transformation carrying L into L

can be written in the form
*

(48) B = (1+e )A€ ,
where (El is a small real number and 62 is a small complex number. We set
E =mmc(l€1},|€2|L

We denote by p(t) the analytic function whose real part is the Green's
function of the exterior of I” with pole at infinity. Thus necar infinity

= 1

(49) Re p(t) = log |tl- @ Lo(iEr)
3

and e” is the outer mapping radius of [’. We let (P(%) be the function,

analytic in the exterior of [', which has a pole of the form
(50) Pt) = tro vt 24
o

at infinity and which has real boundary values on [. Similarly, P(t) is

defined to be the function, analytic in the exterior of F, which has a pols



= Qi =

of the form
d, d2
(51) qJ(t)=t»do+-;j+;—+...

at infinity and which has imaginary boundary wvalues on . The centroid bo

N

of I’ can he expressed in terms of the expansions (50) and (51) by the

formula

(52) b =-Red -iImec, = @1+ iB,

since, in terms of the mapping (23),

(53) @ = z+~% + real const. |, )
(54) = z~'% + imaginary const.

Variational formulas for the capacity ¢ and centroid bo can be found
%
using the domain functions p, P> and 4& We denote by t (t) the infinitesimal

*
transformation of [ onto M induced by (44) and (48). By the residue theorenm,

we find

(553 5"~ 8 = Re 3 3§[p(t)-f*(t)1dp(t) :

where the path of integration is a closed curve surrounding 7. Since p(t)

*, ¥
and p (t (t)) are pure imaginary on [, we can rewrite (55) in the form

¥

S 1 é; *, Ky K
(56) ¢ -8 =Re 503 Plp (+)-p (£)ldp(t)
We wish to evaluate the integral over the corresponding path in the H-gplane,

and thus we replace t as the independent variable bty H to obtain

Ced) ¥ - ¥ = Re 2T1ri gg lp (H")-p (H)ap(a)

where we have used a loose notation that does not indicate explicitly the
change in the functional form of p under the transformation from the t-plane
to the H-plane.

From (48) and (:7) we derive the variational formula

(58) ¥ ¥ = Re 57 3§(elﬂ+¢ )p (B)°a+ o(€)

2R <2’
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where the path of integration is a curve in the H-plane enclosing the line

segment L. In a similar way, we derive from the expressions

i) Br- By = Re sy LW)-¥ (1) ept)

(60) B B, = In gy PL-G (1) p(2)

the variational formulas

\61) @;- By = Re e $f>(elﬂ+62)W’(H)p’(H)dH+ ole) ,
(€2) B3 B = T 33y Pleyme,) P (mp (s o(e)

for the real and imaginary perts @1 and ﬁz of the centroid bo of [,
Formula (58) can be simplified by evaluating the integral in the t-plane
and by deforming the contour of integration into a path which consists of

two small circles Ql and Q? about the end-points t, and t, of [’ and of

1
the two edges of [’ joining these circles. In order to calculate the
integrals over Ql and 9_2, we introduce the local uniformizers ¢ = 2(t-t1)1/2
and 3, = 2(t-t, )1/2. We let the radii of the circles Q. and {2, tend to zero.
The limit cf the integral over Q is Re{St ( )2} k= 1,2, where 6t

is the displacement of tk under the shift (48). The integral over the two
edges of [’ has the limiting value (Z'IT)-]' f(ap/ av)z ®V ds, where W is
the inner normal and s is the arc length algng ", where the integration is
carried out along both edges of P, and where 07V is “he normal displacement

of [ under the shift (48). We denote vy ap/a‘)/k the normal derivative of
the function p in the plane of the uniformizer cok and we denote by Sj/k

the tangential projection with respect to [ of the shift Stk, k=152

Thus we obtain from (58) the Hadamard formula

(63) by - J (222 Svas+ (£ )2 v, + (—5—3;)2 §¥,40(€) ,



and similariv, in an analogous notation, (61) and (62) yield

(64) 661___%_']_8@%%%’, Svds*%‘ﬂ%—%g—l 5V1+§’%%%; 5%,
+ o(e) ,
(65) 85 = 7 Jn 22 2% 67jds+:l{_a§—’3%i%% Svl*%—éa“%é%% 0,
r
+ o(€) ,

where o8 = ¥ - g, 8,51= 5;- @l’ and 5ﬁ2= ﬁ;— PZ' Notice that the

derivatives 2p/o¥, ¥/ and -i acp/anf are actually real number=s.
We attempt to choose the arc ™ as a sclution of the differential

equation (43) which cuts between -bi/z and +bi/2 in such a way that the

three equations

(65) g=0 , By=0 §2=0

are fulfilled. Given the upper end-point t. of [", the equation ¥ =0

¢learly determines the lower end-point tz, since ¥ is a monotonic domain

functional. We now establish that, along a prescribed curve solving (43),

the equation 62= O determines the upper end-point tl uniquely. This is

a consequence of the variational formula (65) because, as we shall prove in

a moment,

: 129 129
(67) iavl>° ’ iaa/2<°

The insqualities (67) show that as tl rises along a solution of (43), and
as t2 follows tl so that =0, the quantity ﬁz increases monotonically.
Thus, indeed, @2 vanishes only once and ‘bl is uniquely determined.

It remains to establish the inequalities (47). We prove first that
our solution of (43) is a curve which intersects each horizontal line just

once. Indeed, if such a surve intersects a horizontal line 2 more than once,



N

|

it intersects it essentially at least three times, and between three
intersections on the horizontal line £ there will be two points where
Im {emﬂ} is stationary, by Rolle's theorem. There is on the same horizontal
iine ,() an additional stationary walue of Im {eidﬂ} which occurs between
the tWwo intersections with the line £ of cne of the solutions of (43)
which forks through —bji/z or +'b%/2. This accounts for at least three
stationary values of In {ei‘%ﬁ} on the single horizontal line ,é, and at
each such staticnary point we £ind from differentiation of (44)

(68) In & ¥(t%b) =0 .

For ¢+ on the line ,é’, (68) reduces to a real quadratic equation, and thus
it can have at most two roots. Thus three stationary wvaluos could not appear,
and we have proved that a solution of (43) which cuts the rsal axis between
= %/2 and +bi/2 must cut each horizontal line just once.

The inequalities (67) can now be deduced from the maximum prineiple.
On the slit [ the funcition Im {Q(t)mt+tl} is non-negative because

Im {&?}-‘ 0 and Im {t—tl}s 0 there. Hence, by the maximum principle, this
function is positive in the exterior of 7, and the first inequality (67}

fcllows by differentiation when we note that at t=1t, we have

1

Im {Cp(t)-'t+t~17} =0. Similarly, the harmonic function Im {Q(t)-t*tz}

is nepative in the exterior of [ because it is non-positive on [, and

since this function vanishes at t= tz, we nbtain the second inequality (67).
Thus we have shown that the equations § =0, C)Z= 0 determine a unique

arc | on sach level curve

(e9) Im {eidﬂ(t)} = A

cutting between mb‘i/z and *b:l/z. The problem is therefore to find all the

values of A such that ﬁ1= 0. It is clear from (44) that when /\ =0 the
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arc [ satlsfying ¥ = f32= 0 passes tl 'ough the origin and is symmetric in
the origin, so that (51= 0. We shall prove that this is the only choice
for A which gives @1= 0. Suppose, indeed, that there were another value
>\o of )\ for which we could find an arc of the level curve (69) satisfying
all the equstions (66). Then we could vary A between O and }\o and consider
for each intermediate value of A the arc (69) with § = ﬁ2= U. By Rolle's
theorem, there would exist an intermediate value )\l of N for which 51
would be stationary. Thus for the corresponding arc I and an appropriate
variation of the type (48) we would obtain

(70) 68 =-86f,= 8B, =0

We shall establish that this is impossible, and therefore that the solution
of (66) 1is unique.

Tor arbitrary real values of X, ¥, and Z we ccnsider the expression
(71) a(t) = Xp(£)+*YP(t)+2 59§§l—

We can choose X, Y, and Z so that at the end-points tl and t2 of the arc I"

satisfying (70) the conditions

_°2q . 29 _
(72) =P 0 53, °

are fulfilled. This follows because 2q/3% is proportional to a linear
combination of the functions 1, cos ©, and sin © on the unit circle z= eie
in the z-plane. By the argument principle, (72) accounts for all the zeros
of the real quantity Sq/2.

With this choice of X, Y, and Z, the variationsl formulas (63), (64),

and (65) yield for any shift (48) of [ the simple relation

(73) X658 5B L8P, =5 | SI- 2L Svdastole)
r
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However, the right-hand side of (73) does not vanish for the snift 9%/ which
gave (70), because &4 is of cne sign on one side of [ and of the opposite
sign orn the other side of I for such a shift, and because by (72) the same
is true of 2q/2+/. Thus we arrive at a contradiction.

Therefore, we conclude that the curve " must be symmetric in the origin.
Next, if the parameter X of formula (69) lies in the interval O0< & < TT/2,
we arrive at a contradiction because of the ldentity
(74) 2y S f g(z)® 2 = /tzdt*

|zl=1 r
Indeed, the left~hand side of (74) is real and positive, whereas the

right-hand side must have a positive imaginary part because [’ lies in the
first and third quadrants. A similar conclusion holds Q?en = %; << 0,
and vhen & =0 a contradietion is obtained because the two sides of (74)
are real with opposite signs. Finally, the case ™= TT/2 must be excluded
also, because now in (74) we have t2 < b1 and the right-hand side is
actually smaller than 2b1.

We thus obtain the final result that a single are [ without forks
cannot occur in the solution of (32). We have therefore established that

the case (iii) does not appear, and it remsins only to exclude the case (ii)

in order to prcve the original inquality (4).

5. The Equations for b1 and b2.

Our treatment of case (ii) is based on dirsct integration of ths

differential equation (32). In the differential equstion for any coefficient
inequality, one can always find the correct number of conditions to determire
all the coefficients which appear by expressing the fact that the singularities

in the z-plane and the it-plane have to match up. In general, this procedure
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is not feasible bsocause it involves hyperelliptic integrals, and even in the
case (iii) it would have led to elliptic integrals. However, we are able

to succeed with the method in case (ii), since the integrations can be

executed in terms of elementary integrals.
The hypothesis in case (ii) is thet the boundary I in the t-plane

consists of three analytic arcs forking from ounc of the branch points

-bi/z or +bi/2 at angles of 120°. Since such a system of arcs has three

end-points, the right~hand side of (32) must have three double zeros and it

can be represented in the form

2b
r 4 2_ T
(75) 2 ~b,27-2b,z Ab3 =

ml 7!
[

E. E
4 = (B,2*B,+ 2 + )2 (2 -2rk )
zZ

2

Since the roots of the left-hand side of (75) lie at inverse points in the

unit circle, we must have

(76) (x| =

o r>1

2 )
Furthermere, the coefficients of zA, z3, p: 3, and z * on the left in (75)

are known, so we obtain four conditions giving the coefficients El’ EZ’ EB’

and EA in terms of the two parameters r and k. Thus
2b, b -2 =
‘s A 2 2 1 il rk k
(77) = -,z --2b2z-4b3- el et (z4rk+ — -—2) (z -2rkz+k? ) .

Z Z

N

By (77), we can express the three coefficients bl’ b2, and b, in terms

3

of the two real parameters r and srg k. In particular,

(78) = 3PP RR

b

and b, and b3 can be exvressed in terms of bl'

In order to determine the unknown bl’ we have to integrate (32)
sxplicitly. By (77), we can write (32) in the form

—2 -
(1) (P Pap = (1o EE L K

k™ 1/2
2

+

)(z —2rk7*k

N

Wl
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An equation for bl will result essentially from the fact that in the conformal
transformation += g(z) one of the roots of 22-2rkz+k2= 0 must map into a root
of tz-b1= 0. We introduce the notation
(80) = (P-2rkeni) V2
and we integrate (79) to obtain
1/2
g(g” -t,) b
(81) i - 2L toglge(Pp) 20k
b b -2 =
1 - Rk ® k
e o log{W+z-rk]j+ ?al loglr- =T (z+rk- 12-— - ;1-{-2-) "
where K is a constant of integration. The reader can easily check (81) by
_ direct dirf crentiation.
| The best way to evaluate K is to subctitute for z in (81) a root of
} i the equation W= 0; the corresponding value of g is 01/2. This yvields
; b ) b
. 1
|- (82) K = 2-1 log -'2——%—"—' f log(r -l)
[ k¥ (r®-1)
| On the other hand, K can also be evaluated by expanding both sides of (81)
|
" about the point at infinity. We have thus
2 b b
g 1 _ 1 20+ K+
(83) -5 - 3 log 2g* K+ 0(5T Igl
’ 2 22 .2, =2 6 by
= 22— - 25k }f f2rk log (r-l)- log 2z + 0(——-) ;
or, substituting for g the expansion (2) and letting z — oo,
3o+ 3 K-k 2k By
(84) K=- 7 iy log(r-1)
- b
= -':,-rk2+ ?f log(xr-1)
The equations (73), (82), and (84) yield together a single eguation for
H the determination of bl‘ We prefer, however, to eliminute K and b1 in order

e
B - — _
mm%
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to obtain the one complex cquation
2 =2 2 =2

(85) k Zk (Br'l)(r-l)log(r-l)*"k Zk (3r-1) (r*1)log(r+1)

2 2 TR = -
= ljl-ZL%k-:gzk- log[3r2-1-2rk[’]+(3r2-1)k2—rk2

for the two real unknowns r and arg k. Our objective is to prove that (85)
has no solutions consistent with the hypothesis (76).

Tt is necessary to specify which branches of the logarithms are meant
in equation (85). This question can be discussed by a more careful examina-
tion of our derivation of (85). We first perform rotations through 900 and
reflectionas in the z-plene and the t-plane until bl lies in the first quadrant,
while b3 remains positive. Taking (82) intc account, we then rewrite (81)

in the form

[g* (b)) /2% 1) ¥ %

2 1/2
(86) g(g®-%, ) “-b; log
1 1 [Ws z—rk]bi/ 2
- rz-W-k =
= by log :2;5:13i7§ *W(z*rk- = - ;5 .

where it is now correct to take values of all the logarithms so that they
vanish gt the root z of the eguations W=0, g= bi/z. In order to obtain

(85), we let z increase from this root and become infinite along the ray

10

rg 2= arg k. A difficulty is encountered when we iry to locate the

corresponding trajectory of g.

The path covered by g obviously has the equation

(87) In p(g) = arg k

Also, we have the relation

(88) p/(g) = / Q_E‘-t ]
P g

-
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so that the trajectory (27) is always directed away from the convex hull
of fj, Therefore, this trajectory cannot cross the ray arg g= arg bi/2+7T
beyond the point -bi/z, since it starts out at the point g=‘b§/2 and such a
crossing would reguire an intermediate position in which ite tangent cCoes
not cut ['. Our analysis shars, then, that we are permitted to use only

values of the logarithms in (86) which have an imaginary part lying between

-TT and +TT. 1I4% follows thet in the final identity (85) the values of the

logarithms should be chosen from this same principel branch. In particular,

the logarithms on the left in (85) are real numbers.
Having determined the correct branch of the logarithms in (85), we
proceed to pare down the region of variation of the parameters r and k

which must be considered. We note that in addition to (78), the formula

(77) yields the expressions

(89) by = (r3-r)k3‘(r2ul)§ 5
b Th

5 gt B
(90) b3 ro-r %
for the ccefficients b2 and b3. Substituting these resulis into the area
theorem (3), we find

. = " hy=h 12

(91) l3r2-1-2rk‘*}2+ 2|rd-re (r2-1)%4 |2+ 3 |r3-12 Bl g

From (76) and (91) we find easily that ¥* lies in the right half-plane and
that 4r=[Im ¥41%+ 3r%/4 < 1, whence
(92) tIm 1—("! < }»
Thus we can replace (91) by the weaker estimate
(3r2-z0-1)% + 20°(r"-1)%* 3%/ < 1,
from which follcws
: 2

(3r+1)%(r-1)%+ 2(r+1)%(2-1)% < 1-3r%/4 < 14

-




or, finally.

(93) (r-1)2£(3r+1)2+ 83 < 1

I

We write r-1= € and derive from (93) the inequality

. 2, 23 1
(94) €"+ € <3¢ ’
whence
- .
(9/) e < 10

Rearranging the terms ir (85) in a more suggestive notation, we must

prcve that the equation
(96) (1+K*) (4+3€ ) € log € +(1-K*) (2¢3 € ) (2+ €)1og(2+ €)
=2 =2 2 =4
= bk~ log bik *+ 8+ 24€ + 12€°-(4rL €)X

has no soluticns in the region defined by (76), (92), and (95), when we

use the principal branch of the logarithm. From (92) and (95) we obtain

readlily

(97) Re {(1+§’*)(4+3e ) € log e} <0 ,

(98) Re{(1~§4)(2+3e)(2+e)1og(2+e)} <12
and

(99) |arg b} | = |argl2s6€+3€2-(202€)¥"] < T2

By (99) and the estimate |bl}51, we have

ot o ) = -2 s -2 _;._ E

(100) |55 208 B, < =+ &L,

since

(101) max lx log x| = -;eL-
O<x<1 '

Finally, it is clear that

(102) Re {8+21.€ +12 62—(4*'4 € )Tcl* % >

o



-
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Thus, combining (97), (28), (100), and (102), we derive from (96) the
absurd inequality

4 3 NS | N §

(103) beag* 5 +3< 2.6

which shows that (85) has, indeed, no relevant solutions.

mL. 2
41

1is f£inishes our proof that the case (ii) in the integration of the
differential equation (32) does not actually arise, and thus, finally, we
complete in every cetail our proof of the original inequality (4). The
tedious calculations required to bring us from the fundamental equation (85)

determining bl %o the contradiction (103) should not be allowed to obscure

the basic value of the method.

6. Corollaries of the Main Theorem.

Decause we know that (42) is the extremal function for the inequality
(4), we can make variations in the large and derive a set of further inequalities
by composition of suitable mappings. We carry out one example of this type

here and establish the inequalities (7).

We write the extremal funciion (42) in thc form
_3 l 4+ e_6
i 2
(104) to=ge 48 — .

7.

The boundary [ in the t-plane includes for this mapping the segment from
-2 epr—§+ JEi) to 2 exp(wg4-J£i). The exterior of this segment is
mapped onto the exterior of the circle of radius exp(~% ) in the w-plane
by the transformation

(105) = S

In the region |w|> exp(- g), we can consider the schlicht function
2
- . ble-3 b,e 2 b36
(106) g =Wt - R TR y
w W

ot




where the numbers bn are arbitrary coefficients of a schlicht function of

the form (2). Through composition of the transformations (104),

’

(105),
and (106) we obtzin cutside “he unit circle in the z-plane the schlicht
function .

ble-34>33‘.e"3 b3e-6-31b e—6—2e”6

(107) g =g+ - N 1 - S s

Z

+
N -

*
Since g is a competing funztion for the inequality (4), the expansion (107)

yields

(108) Re {bBe—6~31ble"6..ge‘6 + %} < %-4 e—6

b
<

and the first inequality (7) is an immediate consequence of (108).

In a similar fashion we can derive the second inequality (7) from the
knonledge that (6), with n=2, is the extremal function for the inequalitr
|b2!5x2/3. Tre chief interest in the inegqualities (7) stems from the fact
that, in the sense of the substitution (8), they become cqualities for the
Koebe function.

The problem of maximizing b3 when all the coefficients bn of the schlicht
function g(z) are real has a somewhat unexpected solution, due to the fact that
the extremal function (104) does not have real coefficients. In the case
where the coefficients are real, routine application of variational metheds
leads to the same differential equation (32) which we obtained in the general
case. One has only to make variations which are symmetric in the real axis to
see this. But since we found in Sections 3, 4, and £ all the schlicht
solutions of (32), and since (104) does not have real coefficients, we deduce
that (6), with n= 3, is actually the extremal function maximizing b3 when all
the zoefficients bn are real. On the other hand, rotation of (204) through

45c yields the function with reasl coefficients which minimizes b3. Thus
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for real coefficients we have the peculiar result
6

(109) -3-¢Csb 55 .
The exceptionally small difference in the size of the estimates on the left
and on the right in (109) is quite remarkable.

After our discussion s» far, it would appear that the next problem
in order of difficulty is to settle the truth of the conjecture |84l544
for schlicht functions (1) inside the unit circle. Our success with the
inequality (4) would indicate that the most promising approach to this
question lies through the study of equations analogous to (85) for the
earlier coefficients a, and a, of the extremal function. We are able here
only to describe the nature of these equations.

From the differential equation for the extremal function w= £{z)

maximizing laAl with a, >0, we can derive the identity

3a .
P 2,1/2 _dw
mo) [+ 32 2apd)V S5

2a 3a = - 2
S [ T e OV

With a suitable constant of integration and with the integrals interpreted
as indefinite integrals, (110) defines the extremal map w= f{z) implicitly.
On the other hand, if we integrate over two corresponding closed peths in
the z~plane and in the w-plane, (110) becomes merely a numerical equation.
Furthermore, by Cauchy's theorem the closed paths need not correspond
according to the map, provided their topology relative to the roots and the

poles of the expressions in parentheses is the same. Let wy and ﬁz be the

zeros of the integrand on the ieft in (110) and let 215 o, ;il; 511, and
1

z,=';; be the zeros of the integrand on the right, with |21\< 1, ’z2[< 1.

-
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%e obtain two eguations, independent of the conformal map w= f(z), for &y
and ag if we choose as the contours of integration in (110) loops around
0 and Wy and around O and Zy, Or loops around O and v, and around O and Zg.
In order to discnss effectively these two complex equations for a, and a5

it would first be necessary to generalize and refine preliminary estimates

on a, and a, of the type (91).

3
Pinally, we wish to point out that the geometrical analysis of Section
2 would lead rather—easily to the result IaAIS.A if it were possible to

establish first even such a simple condition of symmetry for the extremal

=y o=C
-~

function as arg 33= arg a;.
There is a problem related to coefficient inequalities for the schlicht

functions (2) which is concerned with certain diameters Dn associated with

a connected bounded clcsed set [, We define

2
(111) D, = max[ TT |t;-t,] p(n-1)

- i<

for all choices of the n points tj lying in the continuum ".  The number
D2 is the usual diameter of the set [7, and it can be shown that as n—> ®
the nth diameter Dn approaches the outer mapping radius, or transfinite
diameter, ed of [". We are interegted in the problem of determining a set I
which has, for a prescribed value of the outer mapping radius eé, the largest
possible value of Dn [2, 61. That such an extremal set [ exists is an easy
conscquence of the theory of normal families of analytic functions.

It is well known that D2 is a maximum when [ is & line segment with
end-points tl and t2, We shall give a new proof here that, for é§==1’
D? is a maximum when [' consists of three equally spaced rays from the

origin out to the three cube roots of 4, in which case t t2, and t. lie

1’ 3
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at these cube roots.

It takes only a routine application of variational methods to show
that the analytic function p(t) whose real part is the Green's function of

the exterior of the extremal set {  maximizing D, satisfies the differential

3
equaticn (6]

bt v,
S 12
(112) p/(t)" = (t-t1)(i-t2)(t-£;7 ’

Furthermore, there is no loss of generality if we assume that [" has been
rotated and translated so that

(113) t1+ tz* t3 =0 , T > 0

Thus [’ consists of three aralytic arcs which fork from the origin under
angles of 120° and terminate at ty, t,, and t,. The problem is to find t,,

t2’ and t3.

We can find equations for © tz, and t3 by noticing that the Green's

1,
function vanishes on [ and hence vanishes at 0, t), %5, and t,. Thus, in
particular,

1
+1/2 44

N /2 =
[(t-tl)(t‘tz)(t‘tBJ]

t

n

(114) ReJ Re{p(fﬁ)-p(o)"r =0 |,
0 S }

where vie are allowed to integrate along the segment O< t< tl. It follows
from (114) that the integrand must be pure imaginary for at least one value

to of t between O and tl. Hence

2
( ] e =
(115) Im-{to (tz* t3)t0+ tZtBj} o ,

i

or, =ince tz*tB = -tl < 0,

(116) Inm t2t3 =0
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The relation (116), together with (113), implies that t2=153, unless t,
and t3 are both real, a case whichk is easily excluded from the maximum
problem by diréct culculation. Thus tl lies on the perpendicular bisector
of the segment joining tz and t3, and since either of the points t2 or tB
could as easily have bheen chosen to be the one lying on the positive real
axis, we deduce that tl’ tz, and t3 are the vertices of an equilateral
triangle whose center lies at the origin.

From the normalization e =1 we now find that +P t2, andt3 are, in.eed,
the cube roots of 4, and (114) shows that I’ consists of three line segments
joining these roots to the origin. This proof illustrates how simply conditions
of the form (114) can sometimes be treated, even when they involve elliptic
integrals.

It can be shown that the four rays from the origin to the fourth roots
of 4 do not compose the extremal set maximizing DA' The proof is too involved

to present it profitably here, since the outcomec is negative. The construction

of a counter-example consists in appiying the variation

E ORI 7.2,
117 t —T;"‘_"‘—t
: : = 2
to the fourth rocts of 4 with g small positive value of F and developing

in powers of © the outer mapping radius and the fourth diameter of the
continuun thrcugh the varied points which has the smallest po3sible outer
radius. Letting © —0, we find from this deveiropment that the varied

: ) o :
continuum has a larger value of b,e than the original symmetric fork had.
+
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